GROUPS WITH QUADRATIC-NON-QUADRATIC DEHN FUNCTIONS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groups with Quadratic-Non-Quadratic Dehn Functions

We construct a finitely presented group G with non-quadratic Dehn function f majorizable by a quadratic function on arbitrary long intervals.

متن کامل

Quadratic Functions on Torsion Groups

A quadratic function q on an Abelian groupG is a map, with values in an Abelian group, such that the map b : (x, y) 7→ q(x + y) − q(x) − q(y) is Z-bilinear. Such a map q satisfies q(0) = 0. If, in addition, q satisfies the relation q(nx) = nq(x) for all n ∈ Z and x ∈ G, then q is homogeneous. In general, a quadratic function cannot be recovered from the associated bilinear pairing b. Homogeneou...

متن کامل

Minimizing quadratic functions with separable quadratic constraints

This article deals with minimizing quadratic functions with a special form of quadratic constraints that arise in 3D contact problems of linear elasticity with isotropic friction [Haslinger, J., Kučera, R. and Dostál, Z., 2004, An algorithm for the numerical realization of 3D contact problems with Coulomb friction. Journal of Computational and Applied Mathematics, 164/165, 387–408.]. The propos...

متن کامل

Quadratic maps between groups

The notion of quadratic maps between arbitrary groups appeared at several places in the literature on quadratic algebra. Here a unified extensive treatment of their properties is given; the relation with a relative version of Passi’s polynomial maps and groups of degree 2 is established and used to study the structure of the latter. Introduction. Polynomial maps appear in nilpotent group theory...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Algebra and Computation

سال: 2007

ISSN: 0218-1967,1793-6500

DOI: 10.1142/s0218196707003688